A note on bi- and quasi-ideals of semigroups, ordered semigroups*

N. KEHAYOPULU[†], S. LAJOS[‡] and G. LEPOURAS[§]

Abstract. Let S be a semigroup or an ordered semigroup. If S is regular, then the quasi-ideals and the bi-ideals of S coincide. The converse statement does not hold, in general. In regular ordered semigroups having a greatest element the quasi-ideal elements and the bi-ideal elements also coincide. If for an ordered semigroup S having a greatest element the quasi-ideal elements and the bi-ideal elements are the same, this does not mean that S is regular.

Mathematics Subject Classification. 06F05, 20M12

We have seen in the literature that a semigroup S is regular if and only if the quasi-ideals and the bi-ideals of S coincide. This is not true. The quasi-ideals are bi-ideals and, if S is regular, then the bi-ideals and the quasi-ideals of S coincide (cf. [8,9]). The converse statement does not hold, in general. The same for ordered semigroups: If an ordered semigroup S is regular, then the bi-ideals and the quasi-ideals of S are the same (cf. [4; Remark 2]). In particular, if S has a greatest element, that is, if it is a poe (in particular, le, Ve)-semigroup, then the bi-ideal elements and the quasi-ideal elements of S also coincide. The converse statements do not hold, in general. By a poesemigroup we mean an ordered semigroup (: po-semigroup) with a greatest

^{*}Received: January 22, 1996

[†]University of Athens, Department of Mathematics. Mailing (home) address: Nikomidias 18, 161 22 Kesariani, Greece. E-mail: nkehayop@atlas.uoa.gr

Budapest University of Economic Sciences, Department of Mathematics, H-1828 Budapest, Hungary. E-mail: slajos@math.bke.hu

[§]University of Athens, Department of Informatics, TYPA Buildings, Panepistimiopolis, 157 71 Athens, Greece. E-mail: glepoura@di.uoa.gr

element. An le ($\forall e$)-semigroup is an l (\forall)-semigroup with a greatest element [3]. A \forall -semigroup is a semigroup at the same time a semilattice under " \forall " such that $a(b \lor c) = ab \lor ac$ and $(a \lor b)c = ac \lor bc$ for all a,b,c. If the \forall -semigroup is a lattice, then it is called an l-semigroup [1; p. 323, 2; p. 153]. In this paper we give examples of non-regular poe, le, $\forall e$ -semigroups for which the quasi-ideals (resp. the quasi-ideal elements) and the bi-ideals (resp. bi-ideal elements) are the same. We also give examples of non-regular po-semigroups and non-regular semigroups — without order — in which the quasi-ideals and the bi-ideals coincide. We are interested in finding examples with pure po, poe, $\forall e$ -semigroups, that is po-semigroups which are not poe, poe-semigroups which are not $\forall e$ or e, $\forall e$ -semigroups which are not e is also examples on poe (e)-semigroups. For the necessary definitions concerning the ordered semigroups we refer to [3,4] (cf. also [6]). For an easy way to check that the sets of the examples of this paper are ordered semigroups, we refer to [5, 7].

Example 1. The semigroup $S = \{a, b, c, d, e\}$ defined by the multiplication "." below is not regular $(e \neq exe \ \forall \ x \in S)$.

	a	b	c	d	e
a	a	b	c	a	e
b	b	c	b	b	b
c	c	b	c	с	c
d	d	b	c	d	e
e	С	b	c	c	С

The quasi-ideals of S are the sets:

 $\{b,c\}, \{a,b,c\}, \{b,c,d\}, \{a,b,c,d\}, \{b,c,e\}, \{a,b,c,e\}, \{b,c,d,e\}$ and S. The bi-ideals of S coincide with the quasi-ideals.

Example 2. The po-semigroup $S = \{a, b, c, d, e\}$ defined by the multiplication "." and the order " \leq " below is not regular ($\not\equiv x \in S : d \leq dxd$) and the sets of bi-ideals and quasi-ideals of S coincide.

٠	a	b	c	d	e
a	a	b	c	\overline{b}	b
b	b	b	b	b	b
c	a	b	c	b	b
d	d	b	d	b	b
e	ϵ	ϵ	e	e	e

 $\leq = \{(a,a),(a,c),(b,b),(b,d),(c,c),(d,d),(e,b),(e,d),(e,e)\}.$ We give the covering relation " \prec " and the figure of S.

$$\prec = \{(a,c), (b,d), (e,b)\}$$

The quasi-ideals of S are the sets:

 $\{e\}, \{b, e\}, \{a, b, e\}, \{a, b, c, e\}, \{b, d, e\}, \{a, b, d, e\}$ and S.

The bi-ideals of S are the same.

Example 3. The poe-semigroup $S = \{a, b, c, d, e\}$ defined by the multiplication "." and the order " \leq " below is not regular $((c, cec) \notin \leq)$. The sets of bi-ideals and quasi-ideals of S coincide. The sets of bi-ideal elements and quasi-ideal elements of S coincide. This is not a Ve-semigroup since, for example, $a(a \lor b) \neq a^2 \lor ab$.

	a	b	c	d	e
\boldsymbol{a}	a	a	а	d	e
\boldsymbol{b}	a	b	а	d	а
c	а	\boldsymbol{a}	a	d	e
d	d	d	d	d	e
e	d	d	d	d	e.

$$\leq = \{(a,a),(a,d),(a,e),(b,b),(b,d),(b,e),(c,c),(c,e),\\ (d,d),(d,e),(e,e)\}.$$

We give the covering relation " \prec " and the figure of S.

$$\prec = \{(a,d), (b,d), (c,e), (d,e)\}$$

The quasi-ideals of S are the sets: $\{a,b,d\},\{a,b,c,d\}$ and S.

The bi-ideals of S are the same.

The bi-ideal elements of S are the elements d and e. The elements d and e are also quasi-ideal elements of S. [So the sets of bi- and quasi-ideal elements of S coincide].

Example 4. The Ve-semigroup $S = \{a, b, c, d, e\}$ defined by the multiplication "." and the figure below is not regular $((c, cec) \not\in \leq)$. The sets of bi-ideals and quasi-ideals of S coincide. The sets of bi-ideal elements and quasi-ideal elements of S coincide.

•	a	b	c	d	e
\boldsymbol{a}	a	a	\boldsymbol{a}	a	a
b	d	· b	d	d	d
c	a	a	a	a	\boldsymbol{a}
\overline{d}	d	d	d	d	d
e	e	e	e	e	е

The bi-ideals of S, which coincide with the quasi-ideals of S, are the sets: $\{a\}, \{a, c\}, \{b, d\}, \{a, b, d\}, \{a, b, c, d\}$ and S.

The elements a, c, d, e are the bi-ideal elements of S, and each bi-ideal element is a quasi-ideal element, as well.

Example 5. The le-semigroup $S = \{a, b, c, d, e\}$ defined by the multiplication "." and the figure below is not regular $((b, beb) \notin \leq)$. The sets of bi-ideals and quasi-ideals of S coincide. The sets of bi-ideal elements and quasi-ideal elements of S coincide.

	a	b	c	d	e
a	а	a	\boldsymbol{a}	a	a
			а		
c	a	a	c	a	c
\overline{d}	d	d	d	d	d
e	d	d	e	d	e

The bi-ideals of S, which coincide with the quasi-ideals of S, are the sets: $\{a\}, \{a, c\}, \{b, d\}, \{a, b, d\}, \{a, b, c, d\}$ and S.

The elements a, b, c, d, e are the bi-ideal elements of S, and each bi-ideal element is a quasi-ideal element, as well.

References

- [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Coll. Publ., Vol. XXV, Providence, RI, 1967.
- [2] L. Fuchs, Partially Ordered Algebraic Systems, Addison Wesley, New York, 1963.
- [3] N. KEHAYOPULU, On intra-regular Ve-semigroups, Semigroup Forum, 19 (1980), 111-121.
- [4] N. KEHAYOPULU, On regular, intra-regular ordered semigroups, Pure Math. and Appl., 4 (1993), No. 4, 447-461.
- [5] N. KEHAYOPULU, On adjoining greatest element to ordered semigroups, Mathematica Japonica, 38 (1993), No. 1, 61-66.
- [6] N. KEHAYOPULU, On regular, regular duo ordered semigroups, Pure Math. and Appl., 5 (1994), No. 2, 161-176.

- [7] N. Kehayopulu, Note on left regular and left duo poe-semigroups, Sovremennaja Algebra, St. Petersburg Gos. Ped. Herzen Inst., to appear.
- [8] S. Lajos, A félcsoportok ideálelméletéhez, Magyar Tud. Akadémia Mat. Fiz. Oszt. Közl., 11 (1961), 57-66.
- [9] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math., 22 (1961), 217-222.